28 research outputs found

    Integrated Systems Health Management for Space Exploration

    Get PDF
    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions

    Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions

    Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster

    Get PDF
    We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed

    Qualitative Vector Algebra

    No full text
    A significant aspect of reasoning about physical situations involves analysis of the interaction of physical parameters that have both magnitude and direction. There have been some attempts to model motion and rotation in two dimensions, but none of these approaches have been extended to general vector analysis. Humans, however, are exceptionally good in reasoning about direction and motion. In this paper, we define a framework called Qualitative Vector Algebra (QVA) for qualitative reasoning about vector interactions and projection onto prespecified axes. A set oflemmas are developed that relate changes in vector magnitude and direction to relative changes in the resultant vector. We demonstrate how QVA can be applied to reasoning about problems in mechanics. The problem solver developed can form the basis for an Intelligent Tutoring System directed toward high school students and college freshmen.

    A Control Architecture for Intelligent Mobile Robots

    No full text
    Intelligent mobile robots interacting with an uncertain and dynamic environment should be able to identify their own goals and perform tasks based on goals and their interactions with the environment. In addition, they should have planning, control, and reaction capabilities spanning several orders of magnitude in reaction time and solution complexity. We present a conceptual architecture for intelligent mobile robots that adheres to these specifications. "B-Robot" is a heterogeneous architecture inspired by the gross anatomy and physiology of the mammalian central nervous system. It combines goal- and task-level reasoning and planning skills with intermediate-level servo control loops and low-level reactivity. Content areas: reactivity, robotics, planning, situated cognition, system architectures Submitted to: AAAI-93 2 1. Introduction The design and development of intelligent mobile robots to serve in complex and uncertain environments have been a major research topic in AI over ..

    Sensor Validation using Bayesian Networks

    No full text
    One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation techniques address this problem: given a vector of sensor readings, decide whether sensors have failed, therefore producing bad data. We take in this paper a probabilistic approach, using Bayesian networks, to diagnosis and sensor validation, and investigate several relevant but slightly different Bayesian network queries. We emphasize that onboard inference can be performed on a compiled model, giving fast and predictable execution times. Our results are illustrated using an electrical power system, and we show that a Bayesian network with over 400 nodes can be compiled into an arithmetic circuit that can correctly answer queries in less than 500 microseconds on average. 1
    corecore